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A FORMULA FOR THE IMAGINARY PARTS OF THE EIGENVALUES PROBLEM 
CONCERNING A SHELL OSCILLATION IN A COMPRESSIBLE FLUID* 

I.V. SIMONOV 

An exact formula connecting the imaginary parts of the eigenvalues of the problemof 

oscillation of a closed shell in an infinite compressible fluid, with the eigenfunc- 

tions of the problem possessing energy-type integrals, is obtained. Replacing these 

functions by the eigenfunctions of the problem for an incompressible fluid, yields 

an estimate. 

In the problem of forced oscillations of a shell in a fluid, the resonance maxima are 

bounded and inversely proportional to the imaginary parts of the eigenvalues. Their estimate 

finds use when the effect of radiation is compared with other dissipative effects. 

1. The system of equations of the problem of forced oscillations of a thin, elastic 

closed shell in an infinite perfect compressible fluid acted upon by an internal load Q, can 

be written in the form (with the factor eein' deleted everywhere) 

Lu = h (u - A@) + Q (S) 

'P=K(o)p (DiJS),p=R'(o)~-!ro 

h = (c~o/c~,)~, o = RR&,, A = (0, 0, a), a = p,Roi(p&) 

(1.1) 

(1.2) 

Here L is a differential, selfconjugate tensor-operator of the theory of shells, u is the 

shell displacement vector (w is its normal component), b, is the displacement potentialinthe 

fluid, c is speed of sound, p is density (the indices 0 and 1 refer to the shell material 

and the fluid, respectively); R,,,h,S,D are the characteristic dimension, thickness, middle 

surface (the Liapunov surface) and the outside of the shell, respectivley; rp is the potential 

density, K(w) and K'(o) are the integral operators of the potential theory on Swith kernels 

(Zn 1 x-y I)-’ oxp (to 1 x - ~1) and if= ii,, respectively, where x,)' are the radius vectors of the 

observation and integration points, and the index R denotes differentiation along the out- 

ward normal to the surface (here towards S at the point x). The corresponding homogeneous 

problem (Q= 0) represents a nonlinear, nonself-conjugate eigenvalue problem (its solutions 

will be indicated by the degree signO)_ 
In the case of an incompressible fluid (c~-co: the Laplace equation replacestheHelmholtz 

equation in I) and exp in the kernels ti and l?is replaced by unity) the spectrum is discrete 

and distributed along the real axis /l/. Introduction of the compressibility shifts it into 

the complex plane /2/: A"= ~-FIT, 0' zz w* '_i- it_ 

Formal inspection of the solution of the eigenvalue problem uncovers the following 

characteristic feature. The sign of E is such that CD increase exponentially with respect to 
the space variables /3/ 

It follows that the above solutions do not have a finite energy integral (class of solutions 

in L,(DlJS) is almost empty: the exceptions consist of trivial cases of rotationofthe shells 
of revolution as rigid units /2/). The following approach makes it possible to overcome the 
difficulties of the spectral analysis caused by the infinite character of the energy. 

Use of the integral boundary equations (1.2) separates automatically the problem on S 

from the problem of continuing @ into I). We can therefore limit ourselves to investigating 
a two-dimensional mathematical eigenvalue problem. This is sufficient for many cases (includ- 
ing the present). For example, solutions of (1.1) and (1.2) on Scan be written in the form 
of series in eigenfunctions and @ computed in D with help of the known quadrature method, 
using the result of expanding 01, and @,,I, = Ic as the starting expression. 

Let us obtain a particular (auxilliary) solution of the inverse problem of forced oscil- 

lations. Using the given displacement vector u=uO and frequency o =(C/CJ I/X where w cor- 
responds totheprojectionof h" on the real axis and l&O,@, h" is a solution of the eiqenvalue 
problem, and taking into account the remark made above, we obtain Q and Q1. 
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Function Q is given by the solution of the Neumann problem for the Helmholtz equation 
(I is a unit operator) 

Q = K (0) [K'(o) - rp wo 

We note that QI,$;Q," because of the frequency shift from w'to o;Q together with LU satisfy 
(1.2) and, which is important, also Q EL,(D~S). 

Let us substitute u",Q,o into (1.1). Using the relation Lu” = ho (u” - AQ’) we obtain 

Q = ir (u" - AQ”) - Ah’%Q (6Q = Q” - Q) 

The above solution will be used later. Below we derive an energetic relationship. 

2. Let us apply the Green's formula to the functions Q and &representing the solutions 
of (1.1) and (1.2) in the region bounded by the surfaces Sand S, (a sphere of large radius). 
Using the relations (A+o*)Q =O,Imo =0 we obtain 

(2.1) 

The passage to the limit R-co, the Sommerfeld radiationconditionwritten in integral form 

/4/ and the asymptotics of the solutionatinfinity, together make it possible to transform the 
left hand side of (2.1) to the form 

F =Zio(Q,Q)),, (Q,%), = lim 
R-a s IQl'=dSa 

SR 

(2.2) 

The quantity r represents, with the accuracy of up to a constant multiplier, an energy flux 

emitted at infinity over a period. 

Let us introduce the scalar product 

U,g) = fg dS 
J 

To transform the right-hand side of (2.1), we shall write the equation (1.1) twice, for 

and Q, and for the conjugated functions Band 5. Multiplying the first equation by ii 
the second by u, integrating each equation over the surface S and subtracting one from 

other, we obtain 

(Lu,i) - (Lii, u) = i, [(u, ii) - (i, u)] - Xn [(Q, ;) - (3, ID)] + (Q, ii) - (0, u) 

u 

and 

the 

(2.3) 

The left-hand side of (2.3) is identically equal to zero by virtue of the fact that the opera- 

tor L is selfconjugate. Obviously, so is the first term of the right-hand side within the 

square bracket. It follows therefore from (2.1)-- (2.3) that 

(a,~) - (Q,ii) = Pi&a (Q,Q)_ (2.4) 

The above integral equation can be regarded as an equation of energy balance. The work done 

bytheloadQshiftedon u overoneperiodis equaltotheenergy radiatedoverthe sameperiod (with 

the accuracy of up to amultiplier). Substituting the particular solution of Sect.1 into (2.4) 

yields an equation linear in r the solution of which is 

r a(~(Q,s),-Im(d~,~")) 
_ (2.5) 

h- &I",?'- a Hc(Q",wO) 

The quantity r in the exact formula (2.5) is expressed in terms of the integrals, which have 

the form of energy, of the natural oscillation modes and the function Q derived from them, 

as well as Re I". This makes it possible to construct accurate estimates. Let us therefore 

substitute u0 and m by U' and o*, denoting the corresponding mode and frequency of oscillation 

of a shell in an incompressible fluid (by virtue of the separation of a part of the spectrum 

transforming into the spectrum of the simplified problem as ~~-00, see /2/). Thelimitintegral 

(Q,Q), can be written in terms of the potential densities cp using the formulas /4/ 

*n L 

(Q, Q), = j 1 I f (0, *P) Ia sine de dg = (f. fh 

f(e,@ = -$ eieSYq(y)dS, rfl=(K'(o)-1)-ltoO 

8 

(2.6) 
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Here 
with 

from 

q denotes the unit vector from the center in the direction towards the observation point 
coordinates sin 8, co9 JI, sine, sin*, cos@. 
Let us replace Q" and cpin the formulas (2.5), (2.6) by the corresponding W and up' 
the problem for an incompressible fluid. This yields the following approximate formula 

convenient for practical use: 

7 ixd (f’, i’), - _ 
i, (U’, IL’) - a (W. w’) (2.7) 

The formula (2.7) can be used to improve the solution of the forced problem for an incompres- 
sible fluid with poles at h=h'. Addition of the term iz to h', to account for radiation 
losses (other types of dissipation are dealt with in the same manner) removes these singular- 
ities and makes possible the estimation of the magnitudes of the resonance maxima. 

Notes. 1). The operators K and K’ on S have Taylor expansions in o" and are symmetric 
when He&'=O. The general theorems on analyticity with respect to a parameter /5/ impy that 
the solutions taking into account and omitting the compressibility of the fluid, i.e. (2.5) 
and (2.71, differ from each other in the neighborhood of o'=O by the amount -@'a provided 
that they are equal to zero in the mean on S (in other words, they differ by -eO'). From 
the formulas for the number offrequenciesgiven in /2/ it follows that, at least forthe shells 
of revolution and the series of frequencies ofquasi-transverseoscillations the following asy- 
mptotic relation holds: Rew'- h@,h -O@>O and j3='/* for the lower frequencies. The follow- 
ing assertion can be proved: 
h-to. 

(2.7) is an asymptotically exact formula for the given series, as 

2). In practice it is often sufficient to estimate the order of magnitude of z. In this 
case it is expedient to remember the criteria o'/R,<2& where 1 is the characteristic wave 
length in the shell. In this region of the spectrum the compressibility of the fluid has 
little effect on the solution in the neighborhood of the shell /6/, and it should be expected 
that (2.71 will provide a satisfactory approximation to the exact result. 

3). Using the data given in /6/ for the eigenfunctions of the simplest shape shells 
(sphere, cylinder) we can obtain explicit formulas connecting 7 with the number of the form, 
the frequency and the parameters of the shell and fluid. 

4). Theory of oscillation of dissipative systems contains the formula 

where q=hlz is the Q factor, E is the total energy of the system and 6E is the energy loss 

over a period. The formula (2.7) has the same meaning, since its denominator contains the 
total energy of the shell with the attached mass of fluid. In view of this it is clear that 
the problem of the finiteness of the energy touched upon in Sect.1 is far from trivial. 
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